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Abstract. In this paper, we investigate a novel framework for dialogue detection
that is based on indicator functions. An indicator function defines that a particular
actor is present at each time instant. Two dialogue detection rules are developed
and assessed. The first rule relies on the value of the cross-correlation function
at zero time lag that is compared to a threshold. The second rule is based on the
cross-power in a particular frequency band that is also compared to a threshold.
Experiments are carried out in order to validate the feasibility of the aforemen-
tioned dialogue detection rules by using ground-truth indicator functions deter-
mined by human observers from six different movies. A total of 25 dialogue
scenes and another 8 non-dialogue scenes are employed. The probabilities of
false alarm and detection are estimated by cross-validation, where 70% of the
available scenes are used to learn the thresholds employed in the dialogue detec-
tion rules and the remaining 30% of the scenes are used for testing. An almost
perfect dialogue detection is reported for every distinct threshold.

1 Introduction

Digital movie archives have become a commonplace nowadays. Research on movie
content analysis has been very active. A dialogue scene can be defined as a set of con-
secutive shots which contain conversations of people [1]. However, there is a possibility
of having shots in a dialogue scene that do not contain any conversation or even any per-
son. The elements of a dialogue scene are: the people, the conversation and the location
is taking place in [2]. The basic shots in a dialogue scene are: (i) Type A shot: Shot
of actor A’s face; (ii) Type B shot: Shot of actor B’s face; (iii) Type C shot: Shot with
both faces visible. A set of recognizable dialogue acts according to semantic content is
proposed in [3]: (i) Statements; (ii) Questions; (iii) Backchannels; (iv) Incomplete ut-
terance; (v) Agreements; Appreciations. Dialogue detection in movies follows specific
rules since movie making is a kind of art [5]. Lehane states that in a 2-person dialogue
there is usually a A-B-A-B structure of camera angles, thus making dialogue detection
feasible [4]. However, the person who speaks at any given time is not always the one
displayed. Shots of other participants’ reactions are frequently inserted. In addition, the
shot of the speaker may not include his face, i.e. the rear view of his head might be
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depicted. Furthermore, shots of other persons or objects might be inserted in the di-
alogue scene. Evidently, these shots add to the complexity of the dialogue detection
problem, due to their nondeterministic nature. Numerous methods for dialogue detec-
tion have been proposed, because such a preprocessing step is useful for video analysis,
indexing, browsing, searching, and summarization. Both video and audio information
channels could be exploited for efficient dialogue detection. For example, automati-
cally extracted low-level and mid-level visual features are used to detect different types
of scenes, focusing on dialogue sequences [4]. Emotional stages as a means for seg-
menting video are proposed in [6]. The detection of monologues based on audio-visual
information is discussed in [7] where a noticeably high average decision performance
is reported. Related topics to dialogue detection are face detection and tracking [8],
speaker turn detection [9], and speaker tracking [10]. The aforementioned research is
compliant with the MPEG-7 standard.

In this paper, we propose a novel framework for dialogue detection that is based on
indicator functions. In practice, indicator functions can be obtained by speaker turn de-
tection followed by speaker clustering or by face detection followed by a similar clus-
tering procedure. However, in this paper we are interested in setting up the detection
framework in the ideal situation where the indicator functions are error free. Towards
this goal ground truth indicator functions are employed. Two dialogue detection rules
are developed. The first rule employs the value of the cross-correlation function at zero
time-lag and the second one is based on the cross-power in specific frequency band.
Both quantities are compared to corresponding thresholds. Experiments are carried out
using the audio streams extracted from six different movies while the ground-truth in-
dicator functions are defined by human observers. To validate the feasibility of the dia-
logue detection rules, the cross-validation approach is utilized, where 70% of the audio
streams is used to define the two thresholds, and the remaining 30% is used for testing.
Experimental results indicate that an almost perfect dialogue detection is achievable.

The outline of the paper is as follows. The proposed dialogue detection rules are
discussed in Section 2. In Section 3, the dialogue scenes used for the experimental
evaluation of the proposed method and the training procedure are described. In Section
4, performance evaluation is presented and finally conclusions are drawn in Section 5.

2 Dialogue Detection

2.1 Indicator Functions

Indicator functions are frequently used in statistical signal processing. They are closely
related to zero-one random variables used in the derivation of the probabilities of events
through expected values [11]. In maximum entropy probability estimation, indicator
functions are used to insert constrains quantifying facts stemming from the training data
that constitute our knowledge about the random experiment. An example is language
modeling [12]. Indicator functions have also been used in the analysis of the DNA
sequences [13].

Let us suppose that we have an audio recording of N samples, where N is the prod-
uct of duration of the audio recording multiplied by the sampling frequency and we
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know exactly when a particular actor (i.e. speaker) appears. Such information can be
quantified by the indicator function of say actor A, IA(n), defined as:

IA(n) =

{
1 when actor A is present at sample n

0 otherwise.
(1)

For a dialogue, at least two actors should be present. Let us call them A and B with cor-
responding indicator functions IA(n) and IB(n), respectively. Besides their presence,
the actors should be active, that is their indicator functions should not be zero during the
entire scene duration. To avoid such irregularities, we can measure a proper norm of the
indicator function, e.g. the L1 norm or the L2 norm, etc. Since the indicator functions
admit non-negative values, their L1 norm is simply the sum of the indicator function
values:

SA =
N∑

n=1

IA(n). (2)

Two characteristic indicator functions for a dialogue scene are plotted in Figure 1(a).
There are several possibilities for a dialogue scene. For example, there might be audio
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Fig. 1. (a) Indicator functions of two actors in a dialogue scene. (b) Indicator functions of two
actors in a non-dialogue scene (i.e. monologue).

frames where both actors speak. Audio frames corresponding to short silences should
be tolerated. In addition, the audio background in dialogue scenes might contain music
or environment noise that should not prevent dialogue detection. For the time-being,
since optimal (i.e. ground-truth) indicator functions are employed, such cases are not
dealt with explicitly. An example of a scene where there is no dialogue is shown in
Figure 1(b). It is seen that IB(n) is zero for all n. This is the case of an inactive actor
for whom SB = 0.

2.2 Cross-Correlation

The cross-correlation is a measure of similarity between two signals. It is defined as:

cAB(d) =
{

1
N

∑N−d
n=1 IA(n + d)IB(n) if 0 ≤ d ≤ N − 1

cBA(−d) if −(N − 1) ≤ d ≤ 0
(3)
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where N is the total number of samples in the audio stream and d is the time-lag. For
d = 0, the cross-correlation is equal to the product of the two indicator functions IA(n)
and IB(n). Practically, this means that the greater the value of cAB(0) is, the longer
time the two actors speak simultaneously. The cross-correlation for the dialogue shown
in Figure 1(a) is depicted in Figure 2(a). It can be seen that cAB(0) > 0.
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Fig. 2. (a) Cross-correlation of the indicator functions for two actors participating in a dialogue.
(b) Cross-power spectrum for two actors participating in a dialogue.

For the scene corresponding to the two indicator functions plotted in Figure 1(b), the
cross-correlation is zero throughout its domain. From the aforementioned observations,
a plausible dialogue detection rule is:

cAB(0) ≥ ϑ1 (4)

where ϑ1 is an appropriately chosen threshold.

2.3 Cross-Power Spectrum

Another useful notion to be exploited for dialogue detection is the cross-power spec-
trum, i.e., the discrete-time Fourier transform of the cross-correlation:

φAB(f) =
N−1∑

d=−(N−1)

cAB(d) exp (−j2π f d) (5)

where f ∈ [−0.5, 0.5] is the frequency in cycles per sampling interval. In order to robus-
tify the dialogue detection, we propose to examine the cross-power p in the frequency
band [0.065, 0.25] that has been determined by analyzing the measured cross-power
spectra

p =
∫ 0.25

0.065

|φAB(f)|2 df. (6)

When there is a dialogue, p admits a value that depends on the area under the cross-
power spectrum φAB(f). Figure 2(b) shows the cross-power spectrum density over
the frequencies [0, 0.5]. For negative frequencies, φAB(−f) = φ∗

AB(f). On the other
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hand, in the non-dialogue scene corresponding to the two indicator functions plotted
in Figure 1(b), the cross-power spectrum is identically zero. Accordingly, the second
dialogue detection rule proposed is:

p ≥ ϑ2 (7)

where ϑ2 is clearly an appropriately chosen threshold.

3 Data Set and Training Procedure

In total, 33 recordings were extracted from the following six movies: “Analyze That”,
“Cold Mountain”, “Jackie Brown”, “Lord of the Rings I”, “Platoon”, and “Secret Win-
dow”. The total duration of the 33 recordings is 31 min and 7 sec. The audio track was
digitized in PCM at a sampling rate of 48 kHz and the quantized sample length was 16
bit two-channel. 25 out of the 33 recordings correspond to dialogue scenes, while the
remaining 8 do not contain any dialogue. For each recording, the ground-truth indicator
function of the actors appearing in the scene is determined and for each pair of indicator
functions their cross-correlation sequence is calculated.

In order to check the efficiency of the proposed detection rules (4) and (7), we need to
estimate for each rule the probability of detection and the probability of false alarm. The
aforementioned probabilities stem from the binary hypothesis detection problem where
the null hypothesis is H0: the scene is not a dialogue and the alternative hypothesis H1:
the scene is a dialogue. Then, the probability of detection is for rule (4):

P
(1)
d = Prob(rule (4) decides the scene is dialogue|H1) (8)

and the probability of false alarm is given by:

P
(1)
f = Prob(rule (4) decides the scene is dialogue|H0). (9)

P
(2)
d and P

(2)
f are defined similarly for rule (7). To estimate P

(i)
d and P

(i)
f , i = 1, 2,

cross-validation is employed.
The available cross-correlation sequences and their cross-power spectrum densities

are divided into two disjoint subsets. The first subset is used for training and the sec-
ond subset is used for testing. 70% of the available data are used for training and the
remaining 30% for testing. This means that the 23 randomly selected cross-correlation
sequences and their corresponding cross-power spectrum densities are used for train-
ing and the remaining 9 are used for testing. When selecting the 23 training sequences
we simultaneously preserved the ratio between dialogue and non dialogue scenes, i.e.
18 cross-correlation sequences corresponding to dialogue scenes and another 6 corre-
sponding to non dialogue scenes. Similarly, the testing cross-correlation sequences were
formed by 7 audio streams corresponding to dialogue scenes and another 2 correspond-
ing to non dialogue scenes.

Because of the relatively small amount of the training sequences we applied the
leave-one-out method to estimate the probability of detection. That is 22 out of the 23
training sequences are used to estimate the probability of detection and the estimation
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is repeated by leaving a different training sequence out for all training sequences (i.e.
23 times). Let P

(i;r)
d (ϑr

i ) be the probability of detection for the ith rule that employs the
threshold ϑr

i when the rth training sequence is left out. Figure 3(a) shows the average

P
(1)
d (ϑ1) versus ϑ1. The curve is estimated by averaging the probabilities measured in

the 23 repetitions. The corresponding plot of the average P
(2)
d (ϑ2) versus ϑ2 is depicted

in Figure 3(b).
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Fig. 3. (a) The average P
(1)
d (ϑ1) versus ϑ1 for the first rule. (b) The average P

(2)
d (ϑ2) versus ϑ2

for the second rule.

Let ϑi be chosen as the minimum threshold value such that P
(i;r)
d (ϑr

i )=1. Table 1a
summarizes the thresholds determined for each training sequence left out. By applying
the minimum threshold value and using the entries of Table 1a, we find that ϑ1 =
3.52 × 10−18 and ϑ2 = 0.004, respectively.

4 Performance Evaluation During Testing

For the 9 audio streams left out for testing, their corresponding cross-correlations and
cross-power spectrum densities are computed and the values of cAB(0) and p are col-
lected in Table 1b. The first seven rows in Table 1b correspond to dialogue scenes and
the last two correspond to non-dialogues. From the inspection of Table 1b, it is seen that
only the 6th cross-correlation sequence is not detected as corresponding to a dialogue
scene by applying the detection rule (4), although it is. It is also seen that there are no
false alarms. The second detection rule (7) can rectify the just described miss-detection.
A simple OR rule, i.e.

cAB(0) ≥ ϑ1 OR p ≥ ϑ2. (10)

can yield a perfect dialogue detection.
To compensate the lack of real indicator functions, a number of synthetic indicator

functions admitting real values within [0, 1] have been created and including in the
test phase. The nature of syntectic indicator functions created and the performance of
rule (10) is summarized in Table 2.
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Table 1. (a) The 23 pairs of ϑ1 and ϑ2 during the training procedure. (b) The 9 pairs of cross-
correlation value at zero lag and cross-power in the frequency band f ∈ [0.065, 0.25] for the test
recordings.

sequence
left out, r

ϑr
1 ϑr

2

1 3.52 ×10−18 0.010
2 3.52 ×10−18 0.010
3 3.53 ×10−18 0.010
4 3.52 ×10−18 0.0082
5 3.53 ×10−18 0.010
6 3.53 ×10−18 0.010
7 3.52 ×10−18 0.0082
8 3.52 ×10−18 0.0082
9 3.52 ×10−18 0.0082
10 3.52 ×10−18 0.0082
11 3.52 ×10−18 0.0082
12 3.52 ×10−18 0.0082
13 3.53 ×10−18 0.010
14 3.52 ×10−18 0.0082
15 3.52 ×10−18 0.0082
16 3.53 ×10−18 0.010
17 3.52 ×10−18 0.0082
18 3.53 ×10−18 0.010
19 3.52 ×10−18 0.0082
20 3.53 ×10−18 0.0082
21 3.52 ×10−18 0.004
22 3.52 ×10−18 0.004
23 3.52 ×10−18 0.004

test audio
stream index

cAB(0) p

1 1.61 ×10−5 0.0254
2 0.0176 0.0859
3 0.0854 0.0854
4 1.42 ×10−17 0.0307
5 0.0018 0.0529
6 1.73 ×10−18 0.0999
7 0.0043 0.0859
8 0 0
9 0 0

Table 2. Synthetic indicator functions, their corresponding cAB(0) and p values, and final deci-
sion

Nature of the indicator function cAB(0) p Dialogue detection
Adding Gaussian noise ∼ N (0.2, 0.05) independently
to both indicator functions and hard limiting to [0, 1].

0.1899 0.1132 correct

Adding a considerable amount of silence between
speaker turn points (here 33.3% of the average dialogue
duration is silence).

1.3817 ×10−18 0.0191 correct

Adding a considerable amount of overlap between
speaker activities (the overlap amounts to 33.3% of the
average dialogue duration).

0.0761 0.3371 correct

Modeling between-speaker silence as a Gaussian random
variable ∼ N (0.5, 0.05)

0.1053 3.6405 ×10−17 correct

Modeling between-speaker silence as a uniform random
variable

0.3654 2.6820 ×10−17 correct

Modeling between-speaker silence/music/noise as con-
stant value of 0.2.

3.8892 ×10−5 0.0239 correct

5 Conclusions

In this paper, we have proposed a novel framework for dialogue detection in movies
based on indicator functions. Experiments are carried out using indicator function
ground truth extracted from real movies. Cross-validation was used to estimate the
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probabilities of detection and false alarm. The experimental results demonstrate the
feasibility of the proposed detection rules in 33 movie segments. In the future, we plan
to extend our movie database. Moreover, the ground truth indicator functions will be
replaced by actual ones derived by either speaker turn detection followed by speaker
tracking or face detection followed by face tracking by their combination.
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2. L. Chen and M. T. Özsu, “Rule-based extraction from video,” in Proc. 2002 IEEE Int. Conf.
Image Processing, vol. II, pp. 737-740, 2002.

3. P. Král, C. Cerisara, and J. Kleckova, “Combination of classifiers for automatic recognition
of dialogue acts,” in Proc. 9th European Conf. Speech Communication and Technology, pp.
825-828, 2005.

4. B. Lehane, N. O’Connor, and N. Murphy, “Dialogue scene detection in movies using low
and mid-level visual features,” in Proc. Int. Conf. Image and Video Retrieval, pp. 286-296,
2005.

5. D. Arijon, Grammar of the Film Language. Silman-James Press, 1991.
6. A. Vassiliou, A. Salway, and D.Pitt, “Formalising stories: sequences of events and state

changes”, in Proc. 2004 IEEE Int. Conf. Multimedia and Expo, vol. I, pp. 587-590, Hong-
Kong, Taiwan 2004.

7. G. Iyengal, H. J. Nock, and C. Neti, “Audio-visual synchrony for detection of monologues
in video archives,” in Proc. 2003 IEEE lnt. Conf. Acoustics, Speech, and Signal Processing,
vol. I, pp. 329-332, April 2003, Hong Kong.

8. K. Sobottka and I.Pitas, “A novel method for automatic face segmentation, facial feature
extraction and tracking,” Image Communication and Signal Processing, vol. 12, no. 3, pp.
263-281, June 1998.

9. M. Kotti, E. Benetos, and C. Kotropoulos, “Automatic speaker change detection with the
bayesian information criterion using MPEG-7 features and a fusion scheme,” in Proc. 2006
IEEE Int. Symp. Circuits and Systems, May 2006, Kos, Greece.

10. L. Lu and H. Zhang, “Speaker change detection and tracking in real-time news broadcast
analysis,” in Proc. 2004 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. I, pp.
741-744, June 2004.

11. A. Papoulis and S. V. Pillai, Probabilities, Random Variables, and Stochastic Processes, 4/e.
N.Y.: McGraw-Hill, 2002.

12. F. Jelinek, Statistical Methods for Speech Recognition. Cambridge, Massachusetts: The MIT
Press, 1997.

13. R. J. Boys and D. A. Henderson, “A Bayesian approach to DNA sequence segmetation”, in
Proc. 2004 Biometrics, vol. 60, no 3, pp. 573, September 2004.


	Introduction
	Dialogue Detection
	Indicator Functions
	Cross-Correlation
	Cross-Power Spectrum

	Data Set and Training Procedure
	Performance Evaluation During Testing
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




